寒假学习计划
题意
给出两个数组x和y.可以选择一个数组,把其中每一位加上一个整数;每个数组都是首尾相接的,可以选择一个数组,然后把它旋转一定的角度.
最后要使\sum_{i=1}^{n}(x_{i}-y_{i})^2最小.求最小值是多少.
题解
设给第二个数组每一位加了c.化简上面的式子可得:
\sum_{i=1}^{n}(x_{i}-y_{i})^2=\sum(x_{i}^2+y_{i}^2)+nc^2+2c\sum(y_{i}-x_{i})-2\sum_{i=1}^{n}x_{i}y_{i}
上式是关于c的二次函数,与数组是否旋转无关.问题在于如何求最后一项的最小值.
有个技巧是把一个数组重复一遍,另一个数组翻转,再在最后补上等量的0.然后计算卷积.假如数组长度为n的话,最后卷积结果的第n+1位到2n位就是旋转了各个角度的情况下的乘积之和.取最大值代入即可.
代码
#include<cstring>
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
#include<cmath>
#define l(x) (x<<1)
#define r(x) ((x<<1)+1)
#define IL inline
#define reg register
#define LL long long
#define N 480010
#define MOD 998244353
#define INF 0x3f3f3f3f
using namespace std;
int n,m,len,i;
LL c,Ans,sum,t;
LL a[N],b[N];
IL int Abs(int x){return (x<0)?-x:x;}
IL void Swap(LL &a,LL &b){a^=b^=a^=b;}
IL int Min(int a,int b){return (a<b)?a:b;}
IL LL Max(LL a,LL b){return (a>b)?a:b;}
IL int read(){
int p=0,f=1; char c=getchar();
while (c<48||c>57) {if (c=='-') f=-1; c=getchar();}
while (c>=48&&c<=57) p=(p<<1)+(p<<3)+c-48,c=getchar();
return p*f;
}
IL void Ready(){
reg int i=0;
Ans=0; sum=0;
for (i=0;i<=n;i++) Ans+=a[i]*a[i]+b[i]*b[i];
for (i=0;i<=n;i++) sum+=a[i]-b[i];
c=round((double)sum/(n+1));
Ans+=(LL)(n+1)*c*c; Ans-=2*c*sum;
for (i=0;i<=n;i++) b[n+i+1]=b[i];
for (i=0;i<=n/2;i++)
if (i!=n-i)
Swap(a[i],a[n-i]);
n=n*2+1;
}
inline LL Mi(LL x,LL y){
LL p=x,t=1,Res=1;
for (;t<=y;(t&y)?Res=(Res*p)%MOD:0,p=(p*p)%MOD,t<<=1);
return Res;
}
inline void Rader(LL y[]){
int i=0,j=0,k=0;
for (i=1,j=len>>1;i<len-1;i++){
if (i<j) Swap(y[i],y[j]);
k=len>>1;
while (j>=k) j-=k,k>>=1;
if (j<k) j+=k;
}
}
inline void NTT(LL a[],int f){
int i=0,j=0,k=0;
LL wn=0,w=0,u=0,t=0;
Rader(a);
for (k=2;k<=len;k<<=1){
wn=Mi(3,(MOD-1)/k);
if (f==-1) wn=Mi(wn,MOD-2);
for (i=0;i<len;i+=k){
w=1;
for (j=i;j<i+k/2;j++){
u=a[j]; t=(w*a[j+k/2])%MOD;
a[j]=(u+t)%MOD; a[j+k/2]=(u-t+MOD)%MOD;
w=(w*wn)%MOD;
}
}
}
if (f==-1)
for (i=0;i<len;i++) a[i]=(a[i]*Mi(len,MOD-2))%MOD;
}
int main(){
#ifdef __Marvolo
freopen("zht.in","r",stdin);
freopen("zht.out","w",stdout);
#endif
n=read(); m=read(); n--;
for (i=0;i<=n;i++) a[i]=read();
for (i=0;i<=n;i++) b[i]=read();
Ready();
for (len=1;len<=n*2;len<<=1);
NTT(a,1); NTT(b,1);
for (i=0;i<len;i++) a[i]=(a[i]*b[i])%MOD;
NTT(a,-1);
for (i=n/2+1;i<=n-1;i++) t=Max(t,a[i]);
Ans-=2*t;
cout<<Ans<<endl;
return 0;
}
声明:
本文采用
BY-NC-SA
协议进行授权,如无注明均为原创,转载请注明转自
Marvolo
本文地址: [AHOI/HNOI2017]礼物-NTT
本文地址: [AHOI/HNOI2017]礼物-NTT